Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

Identifieur interne : 002607 ( Main/Exploration ); précédent : 002606; suivant : 002608

Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.

Auteurs : Zacchaeus G. Compson [États-Unis] ; Kenneth J. Adams ; Joeseph A. Edwards ; Jesse M. Maestas ; Thomas G. Whitham ; Jane C. Marks

Source :

RBID : pubmed:23532583

Descripteurs français

English descriptors

Abstract

Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.

DOI: 10.1007/s00442-013-2643-6
PubMed: 23532583


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.</title>
<author>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., P. O. Box 5640, Flagstaff, AZ, 86011-5640, USA, Zacchaeus.Compson@nau.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., P. O. Box 5640, Flagstaff, AZ, 86011-5640, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Kenneth J" sort="Adams, Kenneth J" uniqKey="Adams K" first="Kenneth J" last="Adams">Kenneth J. Adams</name>
</author>
<author>
<name sortKey="Edwards, Joeseph A" sort="Edwards, Joeseph A" uniqKey="Edwards J" first="Joeseph A" last="Edwards">Joeseph A. Edwards</name>
</author>
<author>
<name sortKey="Maestas, Jesse M" sort="Maestas, Jesse M" uniqKey="Maestas J" first="Jesse M" last="Maestas">Jesse M. Maestas</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23532583</idno>
<idno type="pmid">23532583</idno>
<idno type="doi">10.1007/s00442-013-2643-6</idno>
<idno type="wicri:Area/Main/Corpus">002653</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002653</idno>
<idno type="wicri:Area/Main/Curation">002653</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002653</idno>
<idno type="wicri:Area/Main/Exploration">002653</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.</title>
<author>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
<affiliation wicri:level="1">
<nlm:affiliation>Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., P. O. Box 5640, Flagstaff, AZ, 86011-5640, USA, Zacchaeus.Compson@nau.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., P. O. Box 5640, Flagstaff, AZ, 86011-5640, USA</wicri:regionArea>
<wicri:noRegion>USA</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Adams, Kenneth J" sort="Adams, Kenneth J" uniqKey="Adams K" first="Kenneth J" last="Adams">Kenneth J. Adams</name>
</author>
<author>
<name sortKey="Edwards, Joeseph A" sort="Edwards, Joeseph A" uniqKey="Edwards J" first="Joeseph A" last="Edwards">Joeseph A. Edwards</name>
</author>
<author>
<name sortKey="Maestas, Jesse M" sort="Maestas, Jesse M" uniqKey="Maestas J" first="Jesse M" last="Maestas">Jesse M. Maestas</name>
</author>
<author>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</author>
<author>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arizona (MeSH)</term>
<term>Biota (MeSH)</term>
<term>Food Chain (MeSH)</term>
<term>Insecta (drug effects)</term>
<term>Insecta (physiology)</term>
<term>Plant Leaves (chemistry)</term>
<term>Populus (chemistry)</term>
<term>Rivers (MeSH)</term>
<term>Species Specificity (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arizona (MeSH)</term>
<term>Biote (MeSH)</term>
<term>Chaine alimentaire (MeSH)</term>
<term>Feuilles de plante (composition chimique)</term>
<term>Insectes (effets des médicaments et des substances chimiques)</term>
<term>Insectes (physiologie)</term>
<term>Populus (composition chimique)</term>
<term>Rivières (MeSH)</term>
<term>Spécificité d'espèce (MeSH)</term>
</keywords>
<keywords scheme="MESH" qualifier="chemistry" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Insecta</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Insectes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Insecta</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Arizona</term>
<term>Biota</term>
<term>Food Chain</term>
<term>Rivers</term>
<term>Species Specificity</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arizona</term>
<term>Biote</term>
<term>Chaine alimentaire</term>
<term>Rivières</term>
<term>Spécificité d'espèce</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23532583</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>24</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>173</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2013</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.</ArticleTitle>
<Pagination>
<MedlinePgn>507-19</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-013-2643-6</ELocationID>
<Abstract>
<AbstractText>Reciprocal subsidies between rivers and terrestrial habitats are common where terrestrial leaf litter provides energy to aquatic invertebrates while emerging aquatic insects provide energy to terrestrial predators (e.g., birds, lizards, spiders). We examined how aquatic insect emergence changed seasonally with litter from two foundation riparian trees, whose litter often dominates riparian streams of the southwestern United States: Fremont (Populus fremontii) and narrowleaf (Populus angustifolia) cottonwood. P. fremontii litter is fast-decomposing and lower in defensive phytochemicals (i.e., condensed tannins, lignin) relative to P. angustifolia. We experimentally manipulated leaf litter from these two species by placing them in leaf enclosures with emergence traps attached in order to determine how leaf type influenced insect emergence. Contrary to our initial predictions, we found that packs with slow-decomposing leaves tended to support more emergent insects relative to packs with fast-decomposing leaves. Three findings emerged. Firstly, abundance (number of emerging insects m(-2) day(-1)) was 25% higher on narrowleaf compared to Fremont leaves for the spring but did not differ in the fall, demonstrating that leaf quality from two dominant trees of the same genus yielded different emergence patterns and that these patterns changed seasonally. Secondly, functional feeding groups of emerging insects differed between treatments and seasons. Specifically, in the spring collector-gatherer abundance and biomass were higher on narrowleaf leaves, whereas collector-filterer abundance and biomass were higher on Fremont leaves. Shredder abundance and biomass were higher on narrowleaf leaves in the fall. Thirdly, diversity (Shannon's H') was higher on Fremont leaves in the spring, but no differences were found in the fall, showing that fast-decomposing leaves can support a more diverse, complex emergent insect assemblage during certain times of the year. Collectively, these results challenge the notion that leaf quality is a simple function of decomposition, suggesting instead that aquatic insects benefit differentially from different leaf types, such that some use slow-decomposing litter for habitat and its temporal longevity and others utilize fast-decomposing litter with more immediate nutrient release.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Compson</LastName>
<ForeName>Zacchaeus G</ForeName>
<Initials>ZG</Initials>
<AffiliationInfo>
<Affiliation>Merriam-Powell Center for Environmental Research, Department of Biological Sciences, Northern Arizona University, 617 S. Beaver St., P. O. Box 5640, Flagstaff, AZ, 86011-5640, USA, Zacchaeus.Compson@nau.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Adams</LastName>
<ForeName>Kenneth J</ForeName>
<Initials>KJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Edwards</LastName>
<ForeName>Joeseph A</ForeName>
<Initials>JA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maestas</LastName>
<ForeName>Jesse M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Whitham</LastName>
<ForeName>Thomas G</ForeName>
<Initials>TG</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Marks</LastName>
<ForeName>Jane C</ForeName>
<Initials>JC</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001130" MajorTopicYN="N">Arizona</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058448" MajorTopicYN="Y">Biota</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020387" MajorTopicYN="Y">Food Chain</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D045483" MajorTopicYN="N">Rivers</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013045" MajorTopicYN="N">Species Specificity</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>02</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>28</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>25</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23532583</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-013-2643-6</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 1999 Jul;120(1):147-155</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28308046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Apr 29;308(5722):636-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15860611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2010 Nov;91(11):3398-406</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21141200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2006 Oct;32(10):2269-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17001533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Genet. 2006 Jul;7(7):510-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2003 Jan;134(2):238-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12647165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecol Lett. 2008 Mar;11(3):296-310</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18047587</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Anim Ecol. 2007 Jul;76(4):687-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17584374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jan;87(1):255-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16634316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2005 Sep;29(4):795-811</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16102603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2001 Jan 2;98(1):166-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11136253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2005 Oct 6;437(7060):880-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16208370</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2008 Nov;158(1):65-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766383</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Adams, Kenneth J" sort="Adams, Kenneth J" uniqKey="Adams K" first="Kenneth J" last="Adams">Kenneth J. Adams</name>
<name sortKey="Edwards, Joeseph A" sort="Edwards, Joeseph A" uniqKey="Edwards J" first="Joeseph A" last="Edwards">Joeseph A. Edwards</name>
<name sortKey="Maestas, Jesse M" sort="Maestas, Jesse M" uniqKey="Maestas J" first="Jesse M" last="Maestas">Jesse M. Maestas</name>
<name sortKey="Marks, Jane C" sort="Marks, Jane C" uniqKey="Marks J" first="Jane C" last="Marks">Jane C. Marks</name>
<name sortKey="Whitham, Thomas G" sort="Whitham, Thomas G" uniqKey="Whitham T" first="Thomas G" last="Whitham">Thomas G. Whitham</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Compson, Zacchaeus G" sort="Compson, Zacchaeus G" uniqKey="Compson Z" first="Zacchaeus G" last="Compson">Zacchaeus G. Compson</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002607 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002607 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23532583
   |texte=   Leaf litter quality affects aquatic insect emergence: contrasting patterns from two foundation trees.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23532583" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020